

Miniräknarguide

Parenteser

Inledning

De flesta av dagens miniräknare klarar av att beräkna längre uttryck i rätt ordning, man behöver alltså inte överdriva användningen av parenteser. Det finns däremot en del situationer där det är nödvändigt.

Exempel	
Bråk	
Ett vanligt fel är att glömma parenteser kring täljare eller nämnare. Tänk här att man måste vara övertydlig mot miniräknaren.	.5
$\frac{5}{2+8}$ skrivs på miniräknaren in 5/(2 + 8).	
Om man inte sätter ut en parentes så räknar miniräknaren uttrycket som 5/2 + 8.	
Exempel: Beräkna $\frac{19+45}{28-12}$	(19+45)/(28-12) 4
Här måste vi ha parentes om både täljaren och nämnaren.	
Potenser	
Exempel: Beräkna 2 ^{3·1,5} .	2^(3*1.5) 22.627417
När vi skriver ut detta måste vi ha en parentes runt exponenten. Om inte så beräknas uttrycket som 2 ³ ·1, 5, (eftersom potenser beräknas före multiplikation).	
Exempel: Beräkna 20 ^{1/3} .	20^(1/3) 2.714417617
Även här måste man vi använda parenteser kring exponenten.	
Exempel: Lös ekvationen $x^{2,8} = 45$.	45^(1/2.8) 3.894332604
För att ta reda på x måste vi skriva in $45^{(\frac{1}{2,8})}$	
Svar: <i>x</i> ≈3, 89	

Övergripande parenteser	
Exempel: Beräkna $\left(\frac{2+4}{3-1}\right)^2$. Här måste vi både parenteser både om täljaren och om nämnaren, samt en övergripande parentes för hela uttrycket som ska upphöjas med två.	((2+4)/(3-1))^2 9
Logaritmer	
Exempel: Beräkna $\lg lg \ 8 \cdot 10$ När man slår in logaritmer på miniräknaren måste man ha parenteser kring det som man ska ta logaritmen av, man får skriva $\lg lg ()$. Om man missar det tolkar miniräknaren det som $\lg lg (8.10) = \lg lg \ 80$, vilket är felaktigt.	lo9(8)*10 9.03089987
Exempel: 1, $4^{2x} = 35$.	109(35)/(2*109(1
$2x \cdot \lg \lg 1, 4 = \lg \lg 35$	5.283271062
Svar: $x = \frac{\lg \lg 35}{2 \cdot \lg \lg 1.4} \approx 5,28$	
Här är det även viktigt att ha parentes kring nämnaren!	

Grafer och koordinatsystemet

Inledning

Miniräknaren har många bra funktioner som vi kan använda när vi arbetar med grafer. Om man kan alla funktioner på miniräknaren så är det otroligt bra hjälpmedel på proven.

I det här avsnittet ska vi gå igenom hur man:

- ställer in graffönstret
- hittar nollställen
- hitta skärningspunkter
- går från $x \rightarrow y$ och $y \rightarrow x$

Exempel

Graffönstret	
Tryck "window" för att redigera graffönstret. I "window" ställer vi in inställningarna för hur graffönstret ska se ut. Vi ställer in största och minsta x- och y-värde. Vi kan även ställa in axelgraderingen. "Xscl = 1" innebär att varje sträck på x-axeln har värdet 1.	WINDOW Xmin=-10 Xmax=10 Xscl=1 Ymin=-10 Ymax=10 Yscl=1 Xres=1
Tryck graph för att se hur dina inställningar ser ut.	Ymax = 10 $Xmin = -10$ $Xscl = 1$ $1 2 3 4 5 6 7 8 9 10$ $Xmax = 10$ $Ymin = -10$
Anpassa graffönstret efter en graf.	
Det finns ingen felfri metod för att ta fram ett perfekt fönster för en graf, ofta får man prova sig fram. Vi ska här gå igenom en strategi hur man provar sig fram samt funktionen "zoom fit". Vi tittar på funktionen $y = 20x - 4x^2$.	Ploti Plot2 Plot3 \Y1820X-4X^2 \Y2= \Y3= \Y4= \Y5= \Y6= \Y7=
Tryck på graph för att se på grafen. Med nuvarande inställningar (zoom standard) ser vi inte hela grafen.	

För att anpassa fönstret till grafen gör vi följande: tryck "zoom" och bläddra därefter ner till "ZoomFit" och tryck "enter".	SUDUI MEMORY 4↑ZDecimal 5:ZSquare 6:ZStandard 7:ZTri9 8:ZInte9er 9:ZoomStat 3H ZoomFit
Det "ZoomFit" gör är att anpassa y-värdena efter de x-värden som är inställda på "window".	
I "window" har vi följande inställningar "Xmin = −10" och "Xmax = 10". Y-värdena är nu anpassade så att vi ser hela grafen för valda x-värden.	
Låt säga att vi är intresserade av hur grafen ser ut mellan nollställena. För ekvationen $v = 20x - 4x^2 = 0$ gäller att $x = 0$ och $x = 5$.	WINDOW Xmin=0 Xmax=5∎
Vi ställer in dessa värden på "window".	Xscl=1 Ymin=-600 Ymax=24.988682… Yscl=1 Xres=1
Nu väljer vi återigen "ZoomFit" för att anpassa y-värdena efter valda x-värden. Tryck "enter".	MEMORY 4†2Decimal 5:2Square 6:2Standard 7:2Tri9 8:2Integer 9:2oomStat MEZoomFit
 Nu ser vi hela grafen mellan nollställena. Sammanfattning: För att ställa in sitt fönster till en viss graf gör man Skriv in funktionen Ställ in x-värden Välj "zoom" → "ZoomFit" Om grafen inte ser ut som önskat; byt x-värden! 	
Nollställen	
Att hitta nollställen med hjälp av miniräknaren är väldigt smidigt. Exempel: Hitta nollställen till funktionen $y = -2x^2 + 4x + 6$. Vi börjar med att skriva in funktionen.	Plot1 Plot2 Plot3 \Y18-2X^2+4X+6 \Y2= \Y3= \Y4= \Y5= \Y6= \Y7=

För att få ett bra fönster väljer vi "ZoomStandard"; "Zoom" → "ZoomStandard" → "Enter".	SUDUI MEMORY 1:ZBox 2:Zoom In 3:Zoom Out 4:ZDecimal 5:ZSquare 3 H ZStandard 7↓ZTri9
Nu ser vi funktionen.	/\
Miniräknaren har en inbyggd funktion för att hitta nollställen; "Zero".	1:value Mizero 3:minimum 4:maximum 5:intersect 6:dy/dx 7:Jf(x)dx
Det man gör nu är att ställa in det område var miniräknaren ska leta efter nollställen. Miniräknaren frågar efter "Left bound"; den vänstra gränsen för området den ska avsöka. Vi börjar med att ta fram nollstället längst till vänster. Ställ markören	Y1=-2X^2+4X+6
Miniräknaren frågar nu efter "Right bound". Ställ markören på högersida om nollstället och tryck "enter".	X= -1.489362 Y= -4.393843 Y1= -2X^2+4X+6 Ki9ht Bound? X=1.9148936 Y=6.3259393
 Miniräknaren frågar nu "Guess?". Den undrar om den ska gissa sig fram till ett nollställe i det markerade området. Om det finns fler än ett nollställe inom det markerade området tar miniräknaren fram det som är närmast markören. Ställ i så fall markören nära det önskade nollstället och tryck "enter". Om det bara finns ett nollställe inom det markerade området så spelar det ingen roll var markören står. Det gröna området visar området som vi sagt åt miniräknaren att söka igenom efter nollställen. 	Y1=-2X^2+4X+6 Guess? X=6382979 Y=2.6319602

Nu har vi fått fram det ena nollstället!	F
$x_1 = -1$	Zero X=-1
För att få fram det andra nollstället så upprepa hela proceduren, men ställ markera området runt det andra nollstället.	Y1=-2X^2+4X+6 Guess? X=3.1914894 Y=-1.605251
Nu har vi även fått fram det andra nollstället!	Y1=-2X^2+4X+6_
Svar: $x_1 = -1, x_2 = 3$ Att ta fram nollställen med hjälp av miniräknaren är ett väldigt bra hjälpmedel, dels för att kontrollräkna sina svar men också vid högre potensekvationer som vi inte kan lösa algebraiskt.	
$f(x) = x^4 + 3x^3 - 4$ är till exempel en funktion där vi inte kan ta fram nollställena algebraiskt, utan måste använda miniräknaren.	
Hitta skårningspunkter	
Exempel: Los ekvationssystemet { $y = 5x - 12y = 44 - 2x$ grafiskt.	Plot1 Plot2 Plot3 \Y185X-12 \Y2844-2X
Vi skriver in funktionerna som y_1 och y_2 på räknaren.	<pre>\Y3= \Y4= \Y5= \Y6= \Y7=</pre>
För att få ett bra fönster väljer vi "ZoomFit"	SUDU MEMORY 4†ZDecimal 5:ZSquare 6:ZStandard 7:ZTri9 8:ZInteger 9:ZoomStat 2H ZoomFit
Nu ser vi båda graferna. Nu ska vi hitta skärningspunkten.	

Välj "Calc" \rightarrow "Intersect"	<u>)::::::::::::::::::::::::::::::::::::</u>
Kommando: 2nd TRACE 5	1:value 2:zero 3:minimum 4:maximum 3: intersect 6:dy/dx 7:Jf(x)dx
Det vi har gjort är att bett räknaren att jämföra två funktioner och ta fram en punkt där de skär varandra. Nu måste vi ange vilka två funktioner det är vi ska jämföra. "First curve?" innebär att vi ska ange den första av de två funktionerna. Uppe i det vänstra hörnet kan du se vilken funktionen det är som är markerad. Om rätt funktion är markerad; tryck "enter".	Y1=5X-12
För att byta markerad funktion använder man uppåt– eller nedåtpilen.	X=5.106383 Y=13.531915
Miniräknaren frågar nu "Second curve?". Se till så att rätt funktion är markerad, tryck därefter "enter". Om vi har fler än två funktioner ritade är det väldigt viktigt att välja rätt funktioner. Om vi bara har två funktioner ritade kan man bara trycka "enter", "enter".	Y2=44-2X Second curve? X=5.106383 Y=33.787234
Nu har vi ställt in vilka för vilka grafer vi vill hitta en skärningspunkt för. Ibland kan det hända att det finns flera skärningspunkter. Det räknaren nu ber oss att göra att visa ungefär var skärningspunkten finns. Om det finns flera skärningspunkter får man ställa markören i närheten av den önskade skärningspunkten. Om det bara finns en skärningspunkt kan vi bara trycka "enter".	Y2=44-2X Guess? X=7.0212766 Y=29.957447
Nu har vi hittat skärningspunkten och lösningen till ekvationssystemet. Svar: $\{x = 8 \ y = 28$	Intersection X=8
$Gå från x \rightarrow y \text{ och } y \rightarrow x$	
När man arbetar med funktioner är det i princip två beräkningar man utför: antingen vet man x och vill ta reda på y , eller vet man y och vill ta reda på x .	
 a) Hur mycket pengar finns det på kontot efter 4 år? b) Efter hur många år finns det 14 000 kr på kontot? 	

Det första vi gör är att ställa upp och skriva in funktionen:	Ploti Plot2 Plot3
$y = 10\ 000 \cdot 1,\ 05^{x}.$	\Y1∎10000*1.05^X
	\\Y>=
	\\Y3=
	\Y 4=
	\YB-
Nu vill vi stalla in fonstret. Tryck på "window".	
Vi kan inte direkt veta vad vi ska ha för inställningar. Vi kan anta att	Amin=0 Ymay=10
då det rör sig om pengar efter ett visst antal år kan en bra	
definitionsmängd vara $0 \le x \le 10$. Vi sätter "Xmin=0" och "Xmax=10".	Ymin=710
	Ymax=10
	YSCI=I Yrac=1
För att få fram ett bra fönster väljer vi nu "ZoomFit".	SUUL MEMORY
	472Uec1mal
	L6:ZStandard
	7:ZTri9
	8:ZInteger
	9:200MStat
Nu garvi bala grafan i vêrt angivna interval	
Nu ser vi hela grafen i vårt angivna interval.	
Nu ser vi hela grafen i vårt angivna interval. Den första uppgiften var att ta reda på y när x = 4.	
Nu ser vi hela grafen i vårt angivna interval. Den första uppgiften var att ta reda på y när x = 4.	
Nu ser vi hela grafen i vårt angivna interval. Den första uppgiften var att ta reda på <i>y</i> när <i>x = 4</i> . Tryck på "trace".	
Nu ser vi hela grafen i vårt angivna interval. Den första uppgiften var att ta reda på y när x = 4. Tryck på "trace".	
Nu ser vi hela grafen i vårt angivna interval. Den första uppgiften var att ta reda på y när x = 4. Tryck på "trace".	
Nu ser vi hela grafen i vårt angivna interval. Den första uppgiften var att ta reda på <i>y</i> när <i>x = 4</i> . Tryck på "trace". När man trycker på trace så ser det fönstret väldigt snarlikt ut	Y1=10000*1.05^%
Nu ser vi hela grafen i vårt angivna interval. Den första uppgiften var att ta reda på y när x = 4. Tryck på "trace". När man trycker på trace så ser det fönstret väldigt snarlikt ut "graph". Skillnaden är att vi här kan välja x-värden och se vad	Y1=10000*1.05^X
Nu ser vi hela grafen i vårt angivna interval. Den första uppgiften var att ta reda på y när x = 4. Tryck på "trace". När man trycker på trace så ser det fönstret väldigt snarlikt ut "graph". Skillnaden är att vi här kan välja x-värden och se vad funktionen har för värde.	Y1=10000*1.05^X
Nu ser vi hela grafen i vårt angivna interval. Den första uppgiften var att ta reda på <i>y</i> när <i>x = 4</i> . Tryck på "trace". När man trycker på trace så ser det fönstret väldigt snarlikt ut "graph". Skillnaden är att vi här kan välja x-värden och se vad funktionen har för värde. Tryck 4 och "enter".	Y1=10000*1.05^X
Nu ser vi hela grafen i vårt angivna interval. Den första uppgiften var att ta reda på <i>y</i> när <i>x = 4</i> . Tryck på "trace". När man trycker på trace så ser det fönstret väldigt snarlikt ut "graph". Skillnaden är att vi här kan välja x-värden och se vad funktionen har för värde. Tryck 4 och "enter".	Y1=10000*1.05^X
Nu ser vi hela grafen i vårt angivna interval. Den första uppgiften var att ta reda på <i>y</i> när <i>x = 4</i> . Tryck på "trace". När man trycker på trace så ser det fönstret väldigt snarlikt ut "graph". Skillnaden är att vi här kan välja x-värden och se vad funktionen har för värde. Tryck 4 och "enter".	Y1=10000*1.05^X
Nu ser vi hela grafen i vårt angivna interval. Den första uppgiften var att ta reda på <i>y</i> när <i>x = 4</i> . Tryck på "trace". När man trycker på trace så ser det fönstret väldigt snarlikt ut "graph". Skillnaden är att vi här kan välja x-värden och se vad funktionen har för värde. Tryck 4 och "enter".	Y1=10000*1.05^% X=4∎
Nu ser vi hela grafen i vårt angivna interval. Den första uppgiften var att ta reda på <i>y</i> när <i>x = 4</i> . Tryck på "trace". När man trycker på trace så ser det fönstret väldigt snarlikt ut "graph". Skillnaden är att vi här kan välja x-värden och se vad funktionen har för värde. Tryck 4 och "enter".	Y1=10000*1.05^% Y1=10000*1.05^%
Nu ser vi hela grafen i vårt angivna interval. Den första uppgiften var att ta reda på <i>y</i> när <i>x = 4</i> . Tryck på "trace". När man trycker på trace så ser det fönstret väldigt snarlikt ut "graph". Skillnaden är att vi här kan välja x-värden och se vad funktionen har för värde. Tryck 4 och "enter". Nu blir en koordinat markerade. Vi ser att när <i>x = 4</i> så är <i>y =</i> <i>12155,063</i> .	Y1=10000*1.05^X Y1=10000*1.05^X
Nu ser vi hela grafen i vårt angivna interval. Den första uppgiften var att ta reda på <i>y</i> när <i>x = 4</i> . Tryck på "trace". När man trycker på trace så ser det fönstret väldigt snarlikt ut "graph". Skillnaden är att vi här kan välja x-värden och se vad funktionen har för värde. Tryck 4 och "enter". Nu blir en koordinat markerade. Vi ser att när <i>x = 4</i> så är <i>y =</i> <i>12155,063</i> . Svar: a) Efter 4 år finns det ca 12 155 kr på kontot.	Y1=10000*1.05^% Y1=10000*1.05^%
Nu ser vi hela grafen i vårt angivna interval. Den första uppgiften var att ta reda på y när x = 4. Tryck på "trace". När man trycker på trace så ser det fönstret väldigt snarlikt ut "graph". Skillnaden är att vi här kan välja x-värden och se vad funktionen har för värde. Tryck 4 och "enter". Nu blir en koordinat markerade. Vi ser att när x = 4 så är y = 12155,063. Svar: a) Efter 4 år finns det ca 12 155 kr på kontot.	Y1=10000*1.05^X X=4
Nu ser vi hela grafen i vårt angivna interval. Den första uppgiften var att ta reda på y när x = 4. Tryck på "trace". När man trycker på trace så ser det fönstret väldigt snarlikt ut "graph". Skillnaden är att vi här kan välja x-värden och se vad funktionen har för värde. Tryck 4 och "enter". Nu blir en koordinat markerade. Vi ser att när x = 4 så är y = 12155,063. Svar: a) Efter 4 år finns det ca 12 155 kr på kontot.	Y1=10000*1.05^% X=4
Nu ser vi hela grafen i vårt angivna interval. Den första uppgiften var att ta reda på <i>y</i> när <i>x</i> = 4. Tryck på "trace". När man trycker på trace så ser det fönstret väldigt snarlikt ut "graph". Skillnaden är att vi här kan välja x-värden och se vad funktionen har för värde. Tryck 4 och "enter". Nu blir en koordinat markerade. Vi ser att när <i>x</i> = 4 så är <i>y</i> = <i>12155,063</i> . Svar: a) Efter 4 år finns det ca 12 155 kr på kontot.	Y1=10000*1.05^% X=4

Nu vill vi ta reda på x-värdet när $y = 14000$.	Plot1 Plot2 Plot3 \Y1∎10000*1.05^X
VI skriver in en ny funktion, $y_2 = 14000$.	\Y2∎14000
Vi har redan ställt in ett bra fönster, så tryck på "graph" för att se	\Ý3= \V⊾=
Turktionema.	\Y5= \Y6=
Vi vill nu hitta skärningspunkten för graferna.	Y2=14000
Välj "Calc" \rightarrow "Intersect".	
Välj "First curve" och "Second curve". Ställ markören i närheten av skärningspunkten och tryck "enter".	
(Se avsnittet om skärningspunkt för mer detaljerad beskrivning).	Guess? X=6.4893617 .Y=14000
Nu har vi fått vår skärningspunkt; vårt svar.	
Svar: Efter ca 6,9 år finns det 14 000 kr på kontot.	
Sammanfattningsvis kan man säga att det är betydligt enklare att gå från x till y än tvärtom.	
 Om vi vet x-värdet behöver vi bara trycka "trace" och rätt x-värde så får vi y-värdet direkt. 	Intersection X=6.8963129 .Y=14000
 Om vi vet y och ska beräkna x måste vi skriva in det önskade y-värdet som en ny funktion och hitta skärningspunkten. 	

Derivata och Extrempunkter

Inledning

Ibland ställs vi inför funktioner som vi inte kan derivera algebraiskt, eller situationer där ekvationen

f(x) = 0 inte kan lösas algebraiskt. I dessa fall måste vi använda räknaren. Räknaren kan också användas till att snabbt beräkna extrempunkter för olika funktioner. Så även om man löst en uppgift perfekt algebraiskt kan det vara bra att kontrollräkna sina svar med hjälp av räknaren.

I det här avsnittet går vi igenom

- Ta fram maximi- och minipunkter
- Ta fram derivata i en viss punkt
- Ta fram grafen till en funktions derivata

Exempel

Maximi- och minipunkter	
Exempel: Bestäm extrempunkter(na) till $f(x) = -x^3 + 1,5x^2 + 18x + 25$. Ange koordinaterna samt om det är maximi- eller minimipunkter.	Plot1 Plot2 Plot3 \Y18-X^3+1.5X^2+ 18X+25
Detta är en uppgift vi kan lösa algebraiskt, men kan lösa snabbare och enklare på räknaren. Vi börjar med att skriva in funktionen.	\Y2= \Y3= \Y4= \Y5=
Tryck på "graph" för att se grafen.	\Ύ6=
Om man har fönsterinställningen "ZoomStandard" ser vi inte riktigt hela grafen. Vi kollar på grafen och bestämmer det område vi vill kolla på; i det här fallet t.ex. – 5≤x≤8.	$\begin{array}{c c} & & \\ & &$
Vi sätter gränserna "Xmin" och "Xmax" i "window". Därefter väljer vi "ZoomFit".	WINDOW Xmin=-5 Xmax=8 Xscl=1 Ymin=-10 Ymax=10 Yscl=1 Xres=1
Nu ser vi grafen bra. Vi ser att grafen har en maximi- och en minimipunkt. Vi vill nu ta reda på dessa koordinater. Vi börjar med minimipunkten.	
Välj "Calc" \rightarrow "minimum". Tryck "enter" Kommando:	1:value 2:zero 88minimum 4:maximum 5:intersect 6:dy/dx 7:Jf(x)dx

Det vi ska göra nu är att sätta ut området varifrån räknaren ska ta fram det minsta värdet.	Y1=-X^3+1.5X^2+18X+25
"Left Bound?" innebär att vi ska markera den vänstra gränsen för området.	
Gå med markören till ett x-värde till vänster om minimipunkten. Trycket därefter "enter".	Left Bound? X=-3.893617 Y=36.683495 \
Räknaren frågar nu "Right Bound". Placera markören till höger om minimipunkten och tryck sedan "enter".	Y1=-X^3+1.5X^2+18X+25 Right Bound? X=.80851064 Y=40.005211
Nu har vi ställt in vilket område miniräknaren ska genomsöka (grönmarkerat i bilden). Tryck "enter".	Y1=-X^3+1.5X^2+18X+25 Guess? X=.B0851064 Y=40.005211
Nu har vi koordinaten till minimipunkten!	
Avrundat blir det (- 2, 3).	>*** - \
Nu ska vi identifiera maximipunkten.	Minimum X=-1.999998 Y=3
Välj "Calc" → "maximum" → "Enter".	1:value 2:zero 3:minimum 9:maximum 5:intersect 6:dy/dx 7:Jf(x)dx
Sätt ut left och right bound så området med maximipunkten blir inringat. Tryck "enter".	Y1=-X^3+1.5X^2+18X+25 Guess? X=6 Y=-29

	-
Nu har vi koordinaten till maximipunkten!	
Avrundat blir det (3: 65.5).	
Svar: Funktionen har en minimipunkt $(-2, 3)$ och en maximipunkt	
vid (3; 65, 5).	
	\ \ \ \
	Maximum 1
	X=3.0000011 Y=65.5
Ta fram derivatan i en punkt	
Ibland vill vi ta fram derivatan i en punkt för en funktion vi inte kan	03.64 03.63 03.63
deriver a lash with $V(i)$ less d ² to from derivator and hit in au	FIOC1 FIOC2 FIOC3
derivera algebraiski. Vi kan da ta fram derivatan med njaip av	\Y1⊟X^3.4*.8^X
räknaren. (Detta är även ett väldigt bra sätt att kontrollräkna sitt svar).	\Y2=
	1.05 <u>–</u>
$3,4$ x^{x}	
Exempel: Bestam $f(1, 8)$ for $f(x) = x = 0, 8$	NY 4=
	\Y5=
Det första man behöver göra är att skriva in funktionen	NYe=
	1.05-
	D17-
Nu trycker vi "Calc" \rightarrow "dv/dx"	
	li:value
(ay/ax ar en annan beteckning for derivata, samma sak som f'(x))	2:zero
	3:minimum
	4ª movi mum
2nd TRACE 6	He naxinun
Kommando:	<u>5:</u> intersect
	l 38 dy∕dx i
	$\overline{7}$: \widehat{f} \widehat{f} (\overline{x}) dx
	1 - 0 1 - 0 / G /
Nu ska vi välja x-värde för den punkten där vi vill veta derivatan.	Y1=8^3.5*.8^8_J
	1 · · · · · · · · · · · · · · · · · · ·
Skriv in "1.8" Truck därafter "enter"	I F/ I
SKIIV III 1,0. HYCK Udienen einen.	
	7
	1 76 1
	X=1.8∎
Miniräknaren visar "dy/dx=8,2242655", vilket innebär	E E E E E E E E E E E E E E E E E E E
f(1, 8) = 8,2242655 och vi har fått fram vårt svarl	E
f(1,0) = 0,2242033,001 vindi lattilani vart svar:	l Fxt l
	1 17 1
Detta verktyget är bra att använda när vi vill ta reda på derivatan för	[
en funktion vi inte kan derivera, eller när vi ska kontrollräkna vårt svar	
	[t
	1 76 1
	dy/dx=8.2242655
Europetion on a Devin	
runkuonen niberiv	
Miniräknaren har även en till metod att ta fram derivata; <i>nDeriv</i> .	ARM NUM CPX PRB
nDeriv är mer komplett verktyg som vi kan använda på många olika	
a set	[월한왕철 시
Sall.	15° N
	6:fMin(
Vi utför samma uppgift som tidigare exempel: bestäm $f'(1, 8)$ för	7. FMSV7
vi utioi samina uppgitt som tidigare exemper, bestant (1, 0) to	r • r riax v
$f(x) = x^{3,4} \bullet 0.8^{x}$ men använder nu verktyget nDeriv.	B u nueriy(
, , , , , , , , , , , , , , , , , , , ,	9↓fnInt(
Väli "moth" "nDoriu"	
vaij matn → nDeriv	

Syntaxen för nDeriv fungerar så här: nDeriv(funktionen, variabel, värde).	nDeriv(X^3.4*.8^ X,X,1.8)
Alltså: först skriver vi in vilken funktion vi vill derivera. Därefter vilken som är den beroende variabeln (i de flesta fall x) och till sist ska vi ange vilket värde på variabeln som vi vill veta derivatan för.	8.224265536
l detta exemplet gäller att funktionen är x ^{3,4} • 0, 8 ^x , variabeln är x och x-värdet är 1, 8. Vi ser att vi får samma svar som med föregående metod.	
Mer om nDeriv	
Många tycker dock att det är lite kluddigt att skriva in hela funktionen på det här sättet. Det man kan göra är att hämta funktionen från sina grafer. Vi använder samma exempel. Se till att funktionen är inskriven som \mathcal{Y}_1 .	Plot1 Plot2 Plot3 \Y1
	\Y6= \Y7=
Det vi ska göra nu är hänvisa nDeriv till vår inskrivna funktion.	nDeriv(∎
Ta fram nDeriv; "math" \rightarrow "nDeriv"	
Tryck på "Vars"	WHRE Y-VARS 1:Window 2:Zoom 3:GDB 4:Picture 5:Statistics 6:Table 7:String
Välj "Y-vars".	VARS WEATER
Välj "Function" och tryck "enter"	inFunction… 2:Parametric… 3:Polar… 4:On/Off…
Om funktionen är inskriven som y så tryck bara "enter". Annars se till	
att rätt funktion är markerad och tryck därefter "enter".	1 Y1 2 Y2 3 Y3 4 Y4 5 Y5 6 Y6 7↓Y7

Nu har vi hänvisat nDeriv till vår funktion.	nDeriv(Yı
När man använder nDeriv ska värden skrivas in "nDeriv(funktionen, variabel, variabelvärde)".	
Vi har nu skrivit in funktionen och ska ange variabel samt variabelns värde.	
Variabeln är x och värdet nå x är 1,8, Skriv in och tryck därefter	nDeriv(Yı,X,1.8)
"enter".	8.224265536
Nu får vi fram derivatan i punkten $x = 1, 8$ för funktionen som är inskriven som $y \cdot x^{3,4} \bullet 0.8^x$	
$y_1, x = 0, 0$.	
Kommando för allt vi gjort: MATH 8 VARS	
• 8 D ENTER	
Ta fram grafen till en funktions derivata	
För att ta fram grafen till en funktions derivata använder vi "nDeriv".	Plot1 Plot2 Plot3
Exempel: Undersök hur derivatans graf vid extrempunkterna för	Y1∎X^3-9X^2+24X
funktionen $f(x) = x^3 - 9x^2 + 24x - 24$.	~24 \Yz=
Vi börjar med att skriva in funktionen som $v_{}$	\Y3= \Y4=
, , , , , , , , , , , , , , , , , , , ,	\Ys= \Y6=
Vi kollar på hur grafen ser ut.	F J
För att få en bättre bild av grafen anpassar vi fönstret efter extrempunkterna.	
Ställ in "Xmin" till 0 och "Xmax" till 6. Välj därefter "ZoomFit".	
Nu ser vi grafen bättre.	
	V I

Nu ska vi ta fram derivatans graf. Gå in på dina funktioner.	Plot1 Plot2 Plot3 \Y1
Vi ska nu göra en graf som är derivatan av vår funktion. Vi använder verktyget nDeriv. Syntaxen för nDeriv är (<i>funktionen, variabel, variabelvärde</i>). Vår funktion finns som y ₁ och vår variabel är x. Men vilket variabelvärde ska vi välja? När vi ritar grafen vill vi ju ha derivatan för varje x-värde, och därför sätter vi variabelvärdet till x.	Ploti Plot2 Plot3 \Y1∎X^3-9X^2+24X -24 \Y2∎nDeriv(Y1,X, X)∎ \Y3= \Y4= \Y5=
MATH 8 VARS ENTER Kommando: X,T,Ø,n X,T,Ø,n) ENTER X,T,Ø,n X,T,Ø,n) Tryck därefter "graph".	
Nu ser vi funktionen och dess derivata.	
Nu kan vi använda alla miniräknarens verktyg för derivatan. Vi kan beräkna derivatan för olika x-värden, hitta derivatans nollställen etc.	Y2=nDeriv(Y1,8,8) X=3.5106383 Y=-2.217745

Allmänna tips

Nedan finns en del smarta tips som underlättar användandet av miniräknaren.

Insert och Entry	
Ibland kan det hända att man slår ett tal på räknaren men efteråt kom	
på att man glömde en parentes eller dylikt. Om det är ett långt uttryck	
känns det jobbigt att slå in allting igen, men det finns två smarta knep	
för att göra det enklare.	
Exempel: Beräkna $4^2 \cdot 3(7 - 12) + 32$	4^2*3(7-12+32 1296 Parentes saknas!
Genom två knapptryck kan vi få fram uttrycket som vi precis slog in;	4^2*3(7-12+32 1296 4^2*3(7-12+32■
Kommando:	
Nu vill vi lägga till parentesen som saknas. För att göra det ställer vi	4^2*3(7-12+32
markören precis till höger om det stället där parentesen ska infogas.	1296 4^2*3(7−12∎32
Nu ska vi använda funktionen "Insert".	4^2*3(7-12+32
Kommando DEL	1296 4^2*3(7-12_32
Allt vi skriver nu kommer att infogas på platsen.	4^2*3(7-12+32
Skriv en parentes.	4^2*3(7-12)+32

Nu är det bara att trycka "enter".	4^2*3(7-12+32
Med de här två knepen kan man spara både tid och ilska på att slippa slå in långa uttryck gång på gång för att man missat någon liten sak.	1296 4^2*3(7−12)+32 -208
Spara värden	
Ibland när man gör långa uträkningar ställs man inför ett dilemma: På en beräkning fick vi 10 decimaler. Talet ska användas i nästa uträkning. Ska man avrunda till ett rimligt antal decimaler eller ska man slå in allt på miniräknaren igen? Det bästa att göra vid ett sånt här tillfälle är att spara sitt svar som en bokstav på räknaren och använda bokstaven vid nästa uträkning. På detta sätt för vi ett exakt svar och avrundar inte någonstans. Det går även snabbare än att skriva in allting igen.	9.25413692134578 9654512320154878 9512312123454879 8547896541423582 1232125848551553 21354976∎
Exempel: Bestäm 100.0, 82 ^x om $x^{3,27} = 74$.	74^(1/3.27) 3.729327257
Först beräknar vi vad x är. $x = 74^{1/3,27}$	
Det vi vill göra nu är att spara svaret som <i>x</i> .	74^(1/3.27)
Miniräknaren har en inbyggd funktion som sparar värdet, "Storage". Znd (-) STO) (X,T,Ø,n ENTER Kommando:	ans→X 3.729327257 3.729327257
Nu skriver vi in vårt uttryck som vi skulle beräkna. Eftersom vi har	744(1/3 27)
sparat värdet som x så skriver vi bara x. 1 0 0 X 0 Kommando: 8 2 X,T,Ø,n ENTER Vi har nu fått fram vårt svar snabht smidigt och exakt	3.729327257 Ans→X 3.729327257 100*0.82^X 47.70716952 ∎
vi nai nu ratt fram vart svar snappt, smidigt och exakt.	

Lycka till med plugget!

/Fredrik Fridlund på Allakando

